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Abstract-A quasi-flow corner theory of elastic-plastic finite deformation of ductile materials has
been proposed, By introduc:ng a decreasing function of quasi-elastic modulus with respect to strain
into the classical flow theory and normality law and by modifying the common decomposition of
elastic-plastic strain rate, he present quasi-flow corner theory achieves smooth and continuous
transitions from the normality law (the Prandtl-Reuss equation) to the non-normality law with
strain, and from plastic loading to elastic unloading, On isotropic condition, the J2 flow and
deformation theories can be included as special cases of the quasi-flow corner theory, The proposed
theory is then applied to simulate the instability and deformation localization under plane strain
tension and uniaxial tension of anisotropic sheet metals, Some of the numerical results have been
compared with experimental ones, © 1998 Elsevier Science Ltd,

1. INTRODUCTION

There has been great interest in the subject ofplastic instability and deformation localization
for elastic-plastic solids in the last two or three decades, Because the deformation local­
ization observes strong nonlinear characteristics and involves complicate loading and
unloading histories, the theoretical analysis and the numerical simulation of the instability
and fracture for ductile materials often encounter many difficulties. One of the difficulties
is that the instability and localization deformation is sensitive to the constitutive law used
in the analysis. To find an efficient constitutive description, the objective co-rotational rate
of stress tensor should be fin.t considered. According to the important fact that any possible
objective corotative rate is a particular case of the Lie derivative (Marsden and Hughes,
1983), three kinds of typical descriptions of the objective corotative rate for the elastic and
the plastic spin referred to ddormed configuration were given by Green and Naghdi (1965),
Hill and Rice (1972), Duszek and Perzyna (1991, 1993), and Schieck and Stumpf (1995),
which are the well-known Zuemba-Jaumann rate, the Green-Naghdi rate and the appro­
priate co-rotational rate of Schieck-Stumpf. In these corotative rates, the ZJ-rate is
invariant with respect to rigid body motion and yields a good approximation for moderately
large strains, the SS-rate seems to valid for the whole range of infinite elastoplasticity, while
the GN-rate is identical with. the SS-rate for the special cases of hypoelasticity and rigid­
plasticity.

Another difficulty is how to correctly find the constitutive models involving the evol­
ution equation of plastic deformation history. In recent years, several constitutive theories
and models based on the ZJ-rate have been proposed in order to overcome the special
difficulties in this subject.

Budiansky (1959), SWren and Rice (1975), and Hutchinson (1974) developed a vertex
hardening constitutive model based on the incremental form of the J2 deformation theory,
which provides more accurate predictions for the buckling process of sheet metal than the
classical flow theory of plasticity does. Christofferson and Hutchinson (1979) proposed a
class of plastic constitutive equations with vertex effect in which the plastic potential is
introduced as a function of ~:tress increments, and a smooth transition from plastic loading
to elastic unloading is incorporated. Its simplest form called J2 corner theory was then
applied to several localization problems. Recently, Gotoh (1985) proposed a group of
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plastic constitutive equations in the form of tensor algebra, which show that the vertex
effect satisfies mathematical restriction about tensor functions. A common feature of the
above theories is that the non-orthogonality rule between plastic strain increment and yield
surface is observed throughout the whole plastic deformation process from initial yielding
up to final localization and fracture.

From the viewpoint of plastic potential and classical flow theory, it is generally
acknowledged that in the initial stage of plastic deformation, the yield surface should be
convex and smooth CLnd consistent with the normality rule of plastic flow. However,
instability and localization of plastic deformation always occur at the final stage of plastic
deformation where the succeeding "yield surface" will gradually appear as a vertex effect.
For this stage, a non·normality rule is needed to describe the plastic deformation and
continuous yield surfa:::e.

The purpose of the present paper is to modify the classical flow theory in order to
include the non-normality rule, while plastic deformation approaches the stage of instability
and localization. Therefore, a relatively simple phenomenological quasi-flow corner theory
for elastic-plastic finite deformation will be proposed. By introducing an instantaneous
quasi-elastic modulus and a modulus evolutional function with strain, a continuous and
smooth transition from the normality rule to the non-normality rule with vertex effect and
from the plastic loading to the elastic unloading after the plastic instability will be realized.
The quasi-flow constitutive description can make any anisotropic yielding rule without
vertex hardening combined with vertex hardening, and connect the classical J2 flow theory
with J2 deformation theory on isotropic hardening condition. It should be mentioned that
in order to compare the result of the present theory with that of the above consitutive
theories, the ZJ-rate i~ also used in the constitutive formulation.

In Section 2.1, to simplify formulae deduction, the small strain version of the quasi­
flow corner theory de~;cribed is used for reference of the formulation scheme of the corner
theory proposed by Clristofferson and Hutchinson (1979). In Section 2.2, the quasi-elastic
modulus Eo in the proposed theory is determined and described in detail, which is the main
character of the present quasi-flow corner theory. In Section 2.3, we discuss the differences
of the constitutive theories by comparing the present theory with other corner theories
based on the isotropic Mises yield criterion. Section 2.4, extends the small strain version into
finite strain problems. Numerical simulation based on the proposed theory and comparison
within the theory and other corner theories as well as some available experimental results
are then presented in Section 3.

2. BA~:IC EQUATIONS FOR QUASI-FLOW CORNER THEORY

2.1. Small deformation formulation
For general strain hardening materials, a convex yield surface is assumed The total

strain rate component eij can be divided into two parts:

(I)

where tij is defined as quasi-elastic strain rate and tlj as quasi-plastic strain rate. For an
arbitrary yield functionf, tlj is assumed to obey a quasi-flow rule:

(2)

where (Ju is the Cauchy stress and lo is a scalar factor, which may be positive on plastic
loading condition or equal to zero on elastic unloading condition. Furthermore, we define
the elastic modulus in instantaneous elastic compliance tensor as:
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(3)

where g(eP) is a modulus evolutional function with respect to the current plastic effective
strain eP, and E is the Young modulus. Under the condition of constant volume law of
plastic deformation, a quasi Poisson ratio (jJ.Q) is introduced:

1-2jJ.Q 1-2jJ.
--- =-- = constant

EQ E

where jJ. is the common Poisson ratio. From the above equations, one obtains:

(4)

(5)

Introducing eqns (3) and (5) into the instantaneous elastic compliances Dijkl' we obtain a
series of relations as follows:

(6)

(7)

(8)

(9)

where aij is the Cauchy stress rate. &~j and &ij are the quasi-elastic and quasi-plastic stress
rates corresponding to t!j and tij, respectively.

The general yield criterion can be written as:

(10)

where 6ij is plastic strain tensor and K is an internal variable which can be related to the
assumed quasi-plastic work wp (wp = JO"ij tij). According to the consistent condition, one
can obtain from eqns (2), (6) and (9) :

where

{
I for plastic loading

IX = 0 for elastic unloading

(11)

(12)

(13)

Substituting eqn (11) into eqn (2) with considering eqn (1), one obtains the constitutive
equation for the quasi-flow theory:

(14)

where
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Dijkl = -A Dijmn -",- -;- D pqkl '

v(fmn v(fpq
(15)

On the other hand, we define H Q as the slope of the stress vs quasi-plastic strain curve
under uniaxial tension, i.e. :

or

Because of

0­
H -­

Q - t p
(16)

(17)

(18)

where Et is the tangent: slope of the stress-strain curve under uniaxial tension, one has:

(19)

On the general stress :,tates, we assume that there is the effective quasi-plastic strain rate
t p connected with the effective stress rate if in terms of HQ , that is:

(20)

The quasi-plastic deformation work rate is

(21)

or

(22)

For an M-order yield function (I), in consideration of the Euler theorem and the
associate flow law, om: can obtain:

(23)

Using the above equations (1), (2), (12) and (23), one obtains:

(24)

Because of the unique corresponding relation between iJij and Bij, it is sure that eqn (24) is
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the inversion of eqn (14). Finally, we call eqns (14) and (24) the constitutive equations of
the quasi-flow theory.

From eqns (4) and (5), the following relation can be easily obtained

(25)

So, eqn (24) can also be re-e:xpressed as:

(26)

where

(27)

and Bfjkl is the true elastic compliance tensor. So, the true plastic strain rate lit can be
determined as :

(28)

2..2. Determination of the quasi-elastic modulus Eo
It is interesting to note that for Mises yield criterion and by selecting the quasi-elastic

modulus Eo == Es (Es is the: secant modulus of the uniaxial stress-strain curve at (1), eqn
(26) comes back to the rate form of the J2D theory proposed by Storen and Rice (1975). It
should be mentioned that the J2D theory focuses attention on the vicinity of the critical
point of bifurcation and po:;t-bifurcation responses. It is obviously seen from eqn (26) that
because Es « E (E is true ellstic modulus), the J2D theory does not obey the normality law
of plastic flow during the whole plastic deformation process from initial yielding to fracture.
Therefore, J2D theory is not coincident with the physical fact that before plastic instability,
the yield surface is smooth and the direction of the plastic strain rate et is orthogonal to
the loading surface. So, for non-proportional loading cases before instability, the J2D theory
will obtain obviously different results from the classical flow theory (see Section 3.1).
Besides, the J2D theory cannot automatically keep the continuity from plastic loading to
elastic unloading because liD in eqn (26) is not equal to zero when elastic unloading starts.
The later shortcoming of the J2D theory has been efficiently overcome by the "J2-corner
theory" (Christofferson and Hutchinson, 1979). However, the Jrcorner theory seems to be
not well used to the homogeneous plastic deformation stage where the classical flow theory
(.J2F) applies. In consideration of the above problems, the proposed quasi-flow corner
theory is designed to realize the smooth and continuous transition from the orthogonality
rule to the non-orthogonality rule during plastic loading to elastic unloading. This transition
depends on the reasonable determinations of the quasi elastic modulus Eo and the evol­
utional functions g(eP).

Based on the above analyses an original scheme to determine the quasi elastic modulis
Eo is proposed. First, we consider the plasticity in the vicinity of bifurcation. Let us also
introduce the angle 8 defim:d by the following formula:
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(29)

where, a;j and &;j are the deviator tensors of aij and iJij, respectively. The physical meaning
of eis explained as an angle between a;j and &;j in the five-dimensional deviator stress space
(Gotoh 1985). Furthermore, we presume that there is an angle eo which divides the plastic
loading ranges into two parts: one is the total loading range in which the loading path
satisfies the condition ofe~ eo. Now, e)* (eo) is defined as the effective strain at the moment
of e= eo, which can be calculated by

a,'a,~*

aT

where, aT is the effective stress corresponding to ef.
In the range of eP ~ e)*, we assume that EQ can be expressed as:

and design the evolutional function gl(eP) as

(30)

(31)

(32)

where ao is a constant related to the strain hardening exponent n, which can, in general, be
taken as nj20 ; e8* is a transitional threshold strain value where EQ transforms to Es, and is
related to material characters and plastic deformation manners. A simple selecting scheme
is to express the e8* usmg a modified factor Co, i.e.

(33)

where Co is a constant smaller than unity (taken in the range of 0.7 ~ 0.95). The meaning
of eqn (33) can be explained by the following consideration. Before the material instability
ofwhole macrostructure, the plastic strain rate Elf in some local regions of the macrostructure
have deviated normality rule. The micro-description of the deviation is obviously difficult.
However, in phenomenological sense, the deviation implies an earlier modulus softening.
So, if af is thought to be the total average plastic instability strain, e8* can be qualitatively
considered as the critical instability plastic strain of internal material points. For example,
for the uniaxial tension, the af value can be obtained from the solution of the following
equation given by Hutchinson and Neale (1977)

(34)

where fa is an initial geometrical inhomogeneous parameter.
It can be seen from eqns (26), (31) and (32) that in the initial stage of plastic defor­

mation (eP « en, EQ ,= E. This fact means that eqn (26) returns to the constitutive equation
of the classical flow th~ory coinciding with normality law. As plastic deformation develops,
especially after e > eg', EQ transforms to Es, and the vertex effect described by the second
term on the right-hand side in eqn (26) will gradually increase. For isotropic Mises materials,
eqn (26) comes back to the constitutive equation of the rate form of J2D theory. The
selection of the threshold value af should refer to the critical instability plastic strain of
materials.
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Now, we illustrate the scheme of determining EQ in the transitional range from plastic
loading to elastic unloading. Firstly, it should be noted that an equivalent meaning of the
so-called elastic unloading is tt or eP = O. Based on such a fact, we assume that there is a
conical angle eQ of loading surface, whose conical surface separates elastic unloading and
plastic flow. For convenience of numerical calculation, we introduce a small Gonstant bQ

and assume that when eP/1t < bQ , strain rate til falls within the elastic unloading range. The
evalue calculated at the moment of;s"P/1t = bQ can be defined as eQ • If sf (eo) is considered
as the effective plastic strain consistent to e= eo, the quasi-elastic modulus EQ in the range
of eo < e~ eQ is designed as follows

(35)

and

(36)

From eqn (31) together with (32), we can see that a continuous transition of EQ from E to
Es is achieved out during loading process; and furthermore from eqn (35) together with
(36), we can also find that when eP/1t = c5Q , i.e. eP(t+/1t) = eP(t) +bQ , the expression of eqn
(35) will automatically give EQ= E and IlQ = 11 during the unloading process. When the
angle e, calculated by eqn (29), is equal to eo, we begin calculating eP using the following
expression:

(37)

where

(38)

and au is calculated by eqn (14).
It must be mentioned that the continuous evolution of the quasi-elastic modulus EQ

from initial plastic deformation up to elastic unloading proves such a fact that the second
term of the right-hand side of eqn (26) gradually increases its vertex effect on yield surface
at loading point within the total plastic loading range (e ~ eo) as plastic deformation
develops; in the transitional range (eo < e~ eQ ), the influence of the term gradually
decreases, and does not eliminate until EQ = E. Besides, recalling eqn (12), eqn (26) will
automatically reduce til = t~j (i.e. tt = 0), which shows a continuous transition of elastic­
plastic strain rate from plastic loading to elastic unloading. The evolutional process of EQ

is depicted in Fig. 1. Taking a comprehensive view of the above discussion, it can be found
that by the determination of the rational evolution of the quasi-elastic modulus, EQ , the

E

-po -po
EO E,

Fig. 1. Evolutional curve of the quasi-elastic modulus EQ with eP•
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quasi-flow corner theory achieves continuous and smooth transitions from the normality
rule (the Prandtl-Reuss equation) to the non-orthogonality rule with strain, and from
plastic loading to ela~itic unloading. In addition, the theory can be extended to the case
where generally initial and consequent anisotropy plays an important role, and then, it
becomes possible that any anisotropic rule of yielding such as kinematic hardening, kine­
matic-isotropic hardening and other general anisotropic hardening without vertex effect is
combined with vertex hardening. For isotropic Mises hardening materials, QFC theory
comes back to J2F theory, when EQ == E, and back to J2D theory when EQ == Es.

2.3. Comparisons witA~in different plastic constitutive theories
In this section, we focus attention on some J2 class of corner theories based on the

isotropic Mises yield criterion in order to understand the essential character of these
constitutive theories. For convenience of comparison, we call the quasi-flow corner theory
for isotropic Mises materials QJ2FC theory.

2.3.1. J2F theory. The strain rate separation for J2F theory is

where

1
2& ( I 1) 'f 1 . 1 d'. -3 - - -, 1 P ashc oa mg

<AF) = (f El E

0, if elastic unloading

(39)

(40)

in which G and I'i are shear modulus and effective Cauchy stress rate, respectively. Noting
that

(41)

and

(42)

we can obtain

(43)

Therefore, we have

(44)

Using volume strain rule

(45)

and multiplying a;j on the two ends of the above expression, we get
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(46)

(47)

Substituting eqns (45) and (46) into eqn (39), the inverted relation of eqn (39) can be
expressed as

(48)

in which

(49)

2.3.2. J2D theory [proposed by StOren and Rice (1975) J.

(50)

Assuming that

(51)

and

(52)

the inversion of eqn (50) is

(53)

in which

(54)

2.3.3. J2C theory [proposed by Christofferson and Hutchinson (1979)].

in which
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{
f3 = f(~)[1 +~~/(e) cot e/f(e)]

y = -2f'(e)(smecose)-1

II, 2 [1t(e-e
o
)] o~e~eo

f(e) = cos "2 ec-eo ' eo ~ e ~ ec·

0, ec < e~ 1t

(56)

(57)

(58)

(59)

(60)

the inversion of eqn (:i5) can be obtained using the analogous reduction of J2F theory

in which

3E
E =~~--=~

c 1-2/1+E/Gc

E/Gc - 2(1- 2/1)
/1c = 2[1-2/1+E/Gcl"

1+/1c
qc = ~hc+2J2

c

2.3.4. J2G theory [proposed by Gotoh (1985) j.

in which the definition of the angle eis the same as that in eqn (29), and

(61)

(62)

(63)
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1 EEt

ho = 3E-E
t

<P(8» = a+bcos8

a = I-b = cos 80 /(1 +cos80 )

:n: 2
80 = - -peP

2

in which p is a pre-given sIT.all constant. Assuming that

1837

(64)

1 I+Jlg l+Jl a<P(8»- =-- =-- + ----'-::-::-'--'-'-
2Gg E g E 2ho

(65)

~ = b<P(8» (~)2 (~_~)
hg cos 8 2{j Et E

the inversion of eqn (63) is

in which

3E
E = -,----,-----=c-:::_

g 1-2Jl+E/Gg

E/Gg -2(1-2Jl)

/lg = 2[1-2/l+E/Gg]

1+ /lg
qg = ~hg+2J2'

g

2.3.5. QJ2FC theory.

Assuming that

and

the inversion of eqn (69) is

(66)

(67)

(68)

(69)

(70)

(71)



1838

where

P. Hu et al.

(72)

(73)

From the above comparison, it is clearly shown that all the theories, except J2F theory, do
not obey the orthogonality rule. It is also interesting to note that the inversion forms of
these constitutive relations are analogous to that of the J2F theory, but the only difference
is that the elastic modulus and the Poisson ratios in these constitutive equations are
functions of deformation (strain).

It should be mentioned that during the whole deformation, the classical J2F theory of
plasticity with a smooth yield surface always obeys the orthogonality rule. Whenever
buckling prediction involves an abrupt change in the relative proportions of the components
of the stress increments, the bifurcation load or deformation from any of the classical
flow theories overesti:nates findings from buckling experiments, in some instances by a
considerable amount (Christofferson and Hutchinson, 1979). On the other hand, the J2D,
J2C and J2G theories do not obey the orthogonality rule throughout the whole deformation
process from initial plastic loading to fracture. The advantage of these theories is that in
the vicinity of the criterial instability position of materials, or during the localized evolution
after instability, these constitutive equations describe well the plastic behaviors and local­
ization. However, the orthogonality plastic flow and the corresponding smooth yield surface
are applicable to the large part of the plastic deformation before instability. Comparing
these plasticity theories, the present QJ2FC theory builds a reasonable link between these
two kinds of theories, and a continuous transition from the orthogonality rule to the non­
orthogonality during plastic deformation is realized. Furthermore, the parameters Co and
tg' are of clear physical meanings on phenomenological point of view, and can be easily
determined according to different material parameters, loading or deformation conditions
and critical instability criterions.

2.4. Extensions into tile finite strain problems
In finite elastoplasticity, the basic kinematic assumption is the multiplicative decompo­

sition of total deformation gradient. The total strain description in the small strain range
must be coincided with the finite strain formulation of elastic-plastic solids. Although some
new descriptions of strain rate for the finite elastoplasticity have been proposed by Green
and Naghdi (1965), Hill and Rice (1972), Duszek and Perzyna (1991, 1993), and Shieck
and Stumpf (1995), ir. order to directly compare the simulated results of the present theory
with that of Budiansky (1959), Christofferson and Hutchinson (1979) and Gotoh (1985),
the well-known ZJ rate is still used in the present analysis. Considering that most of the
ductile metal materials in plastic forming are of a character of infinite elasticity and finite
plasticity.

A simple remedy is to replace the strain rate tij by the logarithmic-strain rate, or
deformation rate, vij defined relative to current material configuration. In this case, the
assumption of eqn (1) relative to small strain range can be considered to be suited to finite
strain case.

Then, the general description of infinite constitutive laws must introduce such stress
measures that implies the effects of rigid displacement and keep so-called objective invaria­
bility relative to reference configuration. Considering the material as discussed above is
elastically compressible, the most straightforward scheme is to use the above formulas
unaltered with (Jij taken to be the Kirchhoff stress tensor and (Jij as its Jaumann rate.
Cartesian components in the above equations may be converted to components referred to
base vectors deforming with the materials. Consistent with the above proposal, Es and Et

should be the secant and tangent moduli of the uniaxial stress-logarithmic-strain curve at
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the current stress state (Ji)' With this interpretation, the constitutive equations (14), (26)
and (27) will coincide with the proposal made in J 2D, J2C and J 2G theories.

3. NUMERICAL TESTS

Several typical examples including plane strain tension and uniaxial tension of aniso­
tropic sheet metals are numerically calculated with the present QFC theory and other J 2­

class theories, in order to show the application of the proposed theory and to compare it
with the other theories.

3.1. Plane strain tension
In this section, the simulated materials are assumed to be isotropic plasticity. Four J2

types of constitutive theories are applied to calculate the plastic deformation and the
development of localization for the plane strain tension of a black with an initial surface
imperfection, in order to compare the deformation behaviors of the loading and unloading
among the different theorie5.

Figure 2(a) shows the: geometry and loading condition of a plane strain block (a
quarter) with X3 infinitive, and Fig. 2(b) is its element meshing. ~ = 10D represents the
initial geometrical imperfection where fo is an imperfection parameter. The range of the
initial imperfection is in L/3. The stress and strain relation of material is assumed to obey
the hardening law: (j = Kol'!' where n is taken as 0.0625 and E = 200 GPa, J1 = 0.33. The
other parameters are taken as:1o = 0.005, Co = 0.9, ao = n/20, eo = 25° and <5Q = 0.00025.

Figure 3(a)-(d) show the deformed specimens and meshes at ~L/L = 0.186 calculated
with different constitutive theories. Figure 4(a) and (b) are, respectively, the corresponding
Bmax/Bav ~ Bav and the modulus evolutional curves of different theories, where Bmax is the
maximum effective strain among all the elements and Bav is the average one of the whole
specimen. It is clearly shown that the above deformed configurations correspond to the
localization stage. Numerically, the localization calculated with J2F theory is much later
than that with J 2D theory and the localizations calculated with QJ2FC and J 2G theories are
located between them. Also, a severe shear band is shown in Fig. 3(c) for J2D theory and
no shear band forms in Fig. 3(a) for J2F theory, and the shear bands for QJ2FC and J 2G
theories are moderate. All three kinds of theories, except J2F, observe continuous decreases
of quasi-elastic moduli with strain. These variations of quasi-elastic moduli are related to
the formations of shear band, and there is no shear band for J2F theory which shows a
constant elastic modulus (.uring deformation. Finally, all the three quasi-elastic moduli
come back to the Young's :nodulus when evident elastic unloading occurs.

In the above calculations, a small strain hardening exponent of n = 0.0625 has been
chosen in order to show evidently the formation of shear band (even though, there is no

Xl Element # B

B

--L
'"~

C X2

C

(a) (b)

Fig. 2. (a) Specimen geometry; (b) finite element mesh (due to the imposed symmetry only a
quadrant is actually employed in the calculation).
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(a) 12F (b) 12G (c) 120 (d) Q12FC

Fig. 3. The deformed mesh at !'J.LfL = 0.186 for four constitutive theories with n = 0.0625 and
fa = 0.005.

(a)

5

Ice.

(b)
1.2r-------------------,

Elastic unloading

12F /
~~-----,r

,~ 0.8

0.12
f av

Fig. 4. (a) f.maxff.av - f.av curve obtained by the four constitutive theories; (b) modulus evolutional
curves with the average effective strain f.av for the four constitutive theories during the whole

deformation from plastic loading to elastic unloading.

shear band for l2F). In fact, both n andio have influences on the formation of shear band.
The formation of shear band or not can be generally considered as a distinction between
localized necking (or ::racture) and diffuse necking. In order to study the influence of both
parameters n andlo on the formation of shear band, two simple criteria are defined. One is
the fracture criterion, that is, 13 = 6max/6av . From numerous calculations, it is assumed that
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o 0.025
fo

Fig. 5. Fracture mechanism diagram for plane-strain tension.

(a) MIL =0.388/0 =0.0001 (b) MIL = 0.35710 = 0.001 (c) MIL = 0.32/0 =0.02
Diffuse necking Mixture necking Localized necking

Fig. 6. Three typical deformed configurations before fracture simulated with the QJ,FC theory
(p = 3.0): (a) diffuse necking; (b) mixture necking; (c) localized necking.

fracture occurs when 13 ~ 3.0. The other criterion is ()(nf = B~/B~v where B~ is the average
effective strain within shea band and B~v is that out of shear band, both values are all
measured within the necking region (i.e. the region in the initial imperfection region). It is
understood that ()(nf = 1.0 means no shear band and a larger value of ()(nf than 1.0 means
more serious shear band. From a great number of calculations with the QJ2FC theory and
a careful induction, a fracture mechanism diagram for plane strain tension is shown in Fig.
5, which reflects the influences of both n and fa on the fracture mode. In this figure, there
are three regions. Region II I corresponds to 13 ~ 3.0 and iXnf > 1.5, and evident shear bands
form in this region. Region I corresponds to 13 ~ 3.0 and ()(nf ~ 1.0, and there is no shear
band. Region II is a mixtu.re region where moderate or slight shear band forms. In fact,
region I is the region of diffuse necking where specimen will finally fracture in the cross­
section at the center; Region III is the region of localized necking where fracture occurs
along shear band. Figure 6(a)-(c) show three typical deformed configurations representing
the localized fracture, diffuse fracture and mixture fracture, respectively.

3.2. Localized deformation ofanisotropic sheet metal under uniaxial tension
An example of localized deformation process of a sheet under uniaxial tension cal­

culated with the QFC theory is given. The material parameters are chosen as: n = 0.2,
E = 200,000 MPa and J1. =, 0.3. Other material and geometrical parameters and element
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(a) (b) (c)

Fig. 7. Necking ins':ability and localized deformation process under plane-stress tension: (a)
ALjL = 0.128; (b) ALjL = 0.152; (c) ALIL = 0.175.

meshing are the same with the Section 3.1. Figure 7(a)-(c) show the numerically calculated
necking instability and localized deformation process under plane stress tension for different
stages. When the stret,;hing ratio /l.L/L reaches about 0.175, a clear shear band is formed,
which declines about 35° with the abscissa. From Hill's localized instability theory, the
shear instability directi on or the zero-extension direction is expressed as (Lian and Baudelet,
1987):

where

_{[H-a(F+H)J I/2
}rp* = tan 1 l-Ha (74)

(75)

Ro and R90 are the rados of transverse strain to thickness strain at rolling and transverse
directions of sheet, rl~spectively. For the case of uniaxial tension (0"2 = 0) an isotropic
material, rp* = 35.26 is obtained from eqn (74). Therefore, it is seen that the shear band
and its direction simulated with the present QFC theory is in agreement with the classical
instability theory.

For anisotropic sheet, the BarIat and Lian (1989) yield function (a M-order yield
function) is used:

where

(76)

and

[(
0" -h 0" )1/2 JI /2k - x 1 2 +h2 2

2 - 2 20"xy (77)
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Table I. Material parameters for three kinds of sheet metals

Materials Ro R45 R90 n 0"0 (MPa) E(MPa)

08Al 1.961 1.204 2.176 0.245 401 201,000
ICrl8Ni9Ti 0.935 1.544 1.067 0.396 404 202,000

DI5 0.311 0.517 0.424 0.166 360 180,200

Table 2. The comparison of total elongation between experiments and simulation

Materials
0% (expt.)

odeg. 90 deg.
0% (predicted)

odeg. 90 deg.

08AI
ICr18Ni9Ti

DI5

42
52
17.6

42
50
19.5

37.7
54.5
14.5

38.5
57.2
17.2

(78)

with (Jo and f o being the uniaxial yield stress in the rolling direction and the shear yield
stress, and the relation between strain and stress ratio has the following form

(79)

For the comparison between present theory with the experiments of uniaxial tension of
sheet, three sheet materials have been used, i.e. 08Al steel (similar to AK steel), 1Cr18Ni9Ti
stainless steel and DIS steel (Si-steel). Tensile test has been performed for these sheets. The
material parameters are shown in Table 1. The total elongations at fracture for these three
sheets are listed in Table 2. For theoretical simulation, the experimental values ofparameters
are used. The index M in the B-L yield function is taken 6 for 08AI and DIS steels (bcc
metals) and 9 for lCr18Ni9Ti (fcc metal). The fracture criterion of 1J;:::: 4.0 is used here.
The calculated total elongations with this fracture criterion for these three sheet materials
are shown in Table 2.

It is seen that the predicted total elongations are generally in agreement with the
experimental results for these materials. The shear band direction is also compared. For
simplification, the case of plane isotropy is assumed, i.e. an average strain ratio of
R = (~+ 2R45 + R 90)/4 is used. In this case, the B-L yield function reduces to the Hosford
yield function. Figure 8 shows the variation of shear band direction with the average strain
ratio calculated by the present theory. It is seen from Fig. 8 that the shear band direction
increases rapidly with the increment of R before R:::; 0.5 and increases very slowly after
that. The experimental valm:s of the three materials are also plotted on Fig. 8, which shows
the same tendency.

4. CONCLUSIONS

The classical J2Ftheory always obeys the normality law of plasticity theory, therefore,
the vertex effect related to the plastic instability cannot be reflected by the J2F theory.



1844 P. Hu et al.

32

o 1.60 3.20
R

Fig. 8. Relation curve between the R value and shear band direction 'P (L::;-experimental values,
.--calculated values).

Other classes of plasticity theories (for example J2D, J2C and J2G theories) developed for
describing the plastic instability or vertex effect do not obey the normality law during the
whole deformation process. In order to modify the above both classes of plasticity theories,
a relatively simple phenomenological quasi-flow corner theory for elastic plastic finite
deformation has been proposed. By introducing a quasi-elastic modulus and a modulus
variation function into the J2F theory and the normality law, the present QFC theory obeys
the normality law during homogeneous plastic deformation stage and realizes the gradual
transitions from the normality law to the non-normality law and from plastic loading to
elastic unloading. Tht:refore, both the classical J2F theory and the J2D type theories are
included by the present theory.

The QFC theory is then applied to simulate the plastic deformation and localization
processes of both plane strain tension and uniaxial tension of sheet. For plane strain case,
both localized necking and diffuse necking can be simulated and well distinguished and a
fracture mechanism d:agram distinguishing the diffuse and localized neck according to the
material parameter and initial geometry imperfection is presented. For the simulation of
uniaxial tension of sheet metals, the predicted total elongation and the shear band direction
with the QFC theory are in agreement with the experimental results of three sheet steels.
The shear band direction simulated for isotropic case are also in coincidence with the result
predicted with the cla:;sical instability theory.

Acknowledgement-This w'Jrk was together supported by the National Natural Science Foundation of China,
and by the Excellent Young Teacher Foundation of National Education Committee of China.

REFERENCES

Budiansky, B. (1959) A reassessment of deformation theories of plasticity. Journal of Applied Mechanics Trans­
actions ASME, 259-264.

Barlat, F. and Lian, J. (15'89) Plastic behavior and stretchability of sheet metals. Part I: a yield function for
orthotropic sheet under plane stress conditions. International Journal of Plasticity, 5, 51-66.

Christofferson, J. and Hutchinson, J. W. (1979) A class of phenomenological corner theories of plasticity. Journal
of Mechanics and Physic~: ofSolids, 27, 465-487.

Duszek, M. K. and Perzyna, P. (1991) The localization of plastic deformation in thermoplastic solids. International
Journal of Solids and StTi~ctures, 27(11),1419-1443.

Duszek, M. K. and Perzyna, P. (1993) Adiabatic shear band localization in elastic-plastic single crystals. Inter­
national Journal of Solidi' and Structures, 30(1), 61-89.

Green, A. E. and Naghdi, 1'. M. (1965) A general theory of an elastic-plastic continuum. Archive Rat. Mechanics
Analysis, BFI8, 251-281

Gotoh, M. (1985) A class of plastic constitutive equations with vertex effect-I. General theory. International
Journal ofSolids and Str.~ctures, 21(11), 1101-1116.

Hutchinson, J. W. (1974) Plasticity buckling. Advances ofApplied Mechanics, 14, 67-144.
Hill, R. and Rice, J. R. (1972) Constitutive analysis of elastic-plastic crystals at arbitrary strain. Journal of

Mechanics and Physics ofSolids, 20, 401-413.



Quasi-flow corner theory of elastic-plastic finite deformation 1845

Hutchinson, J. W. and Neale, K. W. (1977) In Mechanics ofSheet Metal Forming, ed. D. P. Koistinen and N. M.
Wang. Plenum Press, New York.

Lian, J. and Baudelet, B. (1987) F~rming limit diagram of sheet metals in the negative strain region. Material
Science Engineering, 86, 137-143

Marsden, J. E. and Hughes, T. J. R. (1983) Mathematical Foundations of Elasticity. Prentice-Hall, Englewood
Cliffs, N.J.

Schieck, B. and Stumpf, H. (1995; The appropriate co-rotational rate, exact formula for the plastic spin and
constitutive model for finite elastoplasticity. International Journal ofSolids and Structures, 32(24), 3643-3667.

Stiiren, S. and Rice, J. R. (1975) Localized necking in the sheet. Journal of Mechanics and Physics of Solids, 23,
421--441.


